Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38590039

RESUMO

Brassinosteroids (BRs) are plant steroid hormones that control growth and stress responses. In the context of development, BRs play diverse roles in controlling cell differentiation and tissue patterning. The vascular system, which is essential for transporting water and nutrients throughout the plant body, initially establishes a tissue pattern during primary development and then dramatically increases the number of vascular cells during secondary development. This complex developmental process is properly regulated by a network consisting of various hormonal signalling pathways. Genetic studies have revealed that mutants defective in BR biosynthesis or the BR signalling cascade exhibit a multifaceted vascular development phenotype. Furthermore, BR crosstalk with other plant hormones, including peptide hormones, coordinately regulates vascular development. Recently, the involvement of BR in vascular development, especially in xylem differentiation, has also been suggested in plant species other than the model plant Arabidopsis thaliana. In this review, we briefly summarize the recent findings on the roles of BR in primary and secondary vascular development in Arabidopsis and other species.

2.
New Phytol ; 242(3): 1146-1155, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38462819

RESUMO

In Arabidopsis thaliana, heterodimers comprising two bHLH family proteins, LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS5 (TMO5) or its homolog TMO5-LIKE 1 (T5L1) control vascular development in the root apical meristem (RAM). The LHW-TMO5/T5L1 complex regulates vascular cell proliferation, vascular pattern organization, and xylem vessel differentiation; however, the mechanism of preparation for xylem vessel differentiation in the RAM remains elusive. We examined the relationship between LHW-T5L1 and VASCULAR-RELATED NAC-DOMAIN (VND) genes, which are key regulators of vessel differentiation, using reverse genetics approaches. LHW-T5L1 upregulated the expression of VND1, VND2, VND3, VND6, and VND7 but not that of other VNDs. The expression of VND1-VND3 in the RAM was decreased in lhw. In vnd1 vnd2 vnd3 triple loss-of-function mutant roots, metaxylem differentiation was delayed, and VND6 and VND7 expression was reduced. Furthermore, transcriptome analysis of VND1-overexpressing cells revealed that VND1 upregulates genes involved in the synthesis of secondary cell wall components. These results suggest that LHW-T5L1 upregulates VND1-VND3 at the early stages of vascular development in the RAM, and VNDs promote a predifferentiation state for xylem vessels by triggering low levels of VND6 and VND7 as well as genes for the synthesis of secondary cell wall materials.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Transativadores/metabolismo , Xilema/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(15): e2216632120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011193

RESUMO

Spatiotemporal control of cell division in the meristem is vital for plant growth. In the stele of the root apical meristem (RAM), procambial cells divide periclinally to increase the number of vascular cell files. Class III homeodomain leucine zipper (HD-ZIP III) proteins are key transcriptional regulators of RAM development and suppress the periclinal division of vascular cells in the stele; however, the mechanism underlying the regulation of vascular cell division by HD-ZIP III transcription factors (TFs) remains largely unknown. Here, we performed transcriptome analysis to identify downstream genes of HD-ZIP III and found that HD-ZIP III TFs positively regulate brassinosteroid biosynthesis-related genes, such as CONSTITUTIVE PHOTOMORPHOGENIC DWARF (CPD), in vascular cells. Introduction of pREVOLUTA::CPD in a quadruple loss-of-function mutant of HD-ZIP III genes partly rescued the phenotype in terms of the vascular defect in the RAM. Treatment of a quadruple loss-of-function mutant, a gain-of-function mutant of HD-ZIP III, and the wild type with brassinosteroid and a brassinosteroid synthesis inhibitor also indicated that HD-ZIP III TFs act together to suppress vascular cell division by increasing brassinosteroid levels. Furthermore, brassinosteroid application suppressed the cytokinin response in vascular cells. Together, our findings suggest that the suppression of vascular cell division by HD-ZIP III TFs is caused, at least in part, by the increase in brassinosteroid levels through the transcriptional activation of brassinosteroid biosynthesis genes in the vascular cells of the RAM. This elevated brassinosteroid level suppresses cytokinin response in vascular cells, inhibiting vascular cell division in the RAM.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Meristema , Brassinosteroides/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Zíper de Leucina/genética , Citocininas/metabolismo , Divisão Celular , Regulação da Expressão Gênica de Plantas
4.
Curr Opin Plant Biol ; 57: 118-123, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927424

RESUMO

Vascular development involves multiple processes, including the establishment of vascular stem cells (e.g. procambium/cambium cells), stem cell divisions, and cell specification. A number of key transcription factors regulating vascular development have been identified, and the molecular mechanisms underlying these regulators have been keenly investigated. These studies uncovered that transcriptional regulation and phytohormone signaling have central roles in proceeding vascular developmental processes. Recent research approaches contributed to identify key transcription factors and their downstream genes, which enhanced our understanding of vascular development. This review discusses some research approaches and emerging molecular mechanisms that mediate the activation of transcriptional networks regulating root vascular development.


Assuntos
Câmbio , Redes Reguladoras de Genes , Reguladores de Crescimento de Plantas , Fatores de Transcrição/genética
5.
Plant Cell Physiol ; 60(12): 2684-2691, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31392340

RESUMO

The phytohormone auxin governs various developmental processes in plants including vascular formation. Auxin transport and biosynthesis are important factors in determining auxin distribution in tissues. Although the role of auxin transport in vein pattern formation is widely recognized, that of auxin biosynthesis in vascular development is poorly understood. Heterodimer complexes comprising two basic helix-loop-helix protein families, LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS5 (TMO5)/TMO5-LIKE1 (T5L1), are master transcriptional regulators of the initial process of vascular development. The LHW-TMO5/T5L1 dimers regulate vascular initial cell production, vascular cell proliferation and xylem fate determination in the embryo and root apical meristem (RAM). In this study, we investigated the function of local auxin biosynthesis in initial vascular development in RAM. Results showed that LHW-T5L1 upregulated the expression of YUCCA4 (YUC4), a key auxin biosynthesis gene. The expression of YUC4 was essential for promoting xylem differentiation and vascular cell proliferation in RAM. Conversely, auxin biosynthesis was required for maintaining the expression levels of LHW, TMO5/T5L1 and their targets. Our results suggest that local auxin biosynthesis forms a positive feedback loop for fine-tuning the level of LHW-TMO5/T5L1, which is necessary for initiating vascular development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Raízes de Plantas/metabolismo , Xilema/metabolismo
6.
Curr Top Dev Biol ; 131: 141-160, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30612615

RESUMO

The plant vasculature is a sophisticated system that has greatly contributed to the evolution of land plants over the past few hundred million years. The formation of the vascular system is a well-organized plant developmental process, but it is also flexible in response to environmental changes. Provascular cells arise after asymmetric cell division in early embryos and differentiate into various vascular cells, including procambial cells, which function as vascular stem cells. Mutual regulation by auxin and cytokinin is essential for vascular pattern formation, in which the xylem, phloem, and procambium are arranged in a species-specific manner. The hierarchical expression of different transcription factors contributes to the sequential development of vascular tissues. These transcription factors sometimes form feedback loops involving plant hormones. Non-cell autonomous signals, including hormones, peptides, and miRNAs, function in the organization of vascular tissue development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Floema/crescimento & desenvolvimento , Células-Tronco/citologia , Xilema/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Floema/genética , Células-Tronco/metabolismo , Xilema/genética
7.
Plant Cell Physiol ; 59(5): 989-996, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29444288

RESUMO

Xylem includes xylem parenchyma cells, fibers and tracheary elements. Differentiation of tracheary elements is an irreversible process that is controlled by the master regulator VASCULAR-RELATED NAC-DOMAIN 7 (VND7). Molecular events occurring downstream of VND7 are well understood, but little is known regarding upstream regulation of VND7. In this study, we identified LOB DOMAIN-CONTAINING PROTEIN 15 (LBD15)/ASYMMETRIC LEAVES2-LIKE (ASL11) as a regulator of VND7. LBD15 was expressed in immature vascular cells and positively regulated both VND7 expression and differentiation of tracheary elements. LBD15 directly associated with the upstream sequence of VND7 and positively regulated VND7 expression. A 25 bp upstream sequence was essential for VND7 expression in the elongation zone of Arabidopsis roots. Taken together with previous studies identifying LBD15 as a target of VND7, we propose that LBD15 acts in a positive feedback regulation system that promotes and accelerates VND7 expression during the initiation phase of tracheary element differentiation in roots.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Xilema/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Fenótipo , Plantas Geneticamente Modificadas , Domínios Proteicos , Fatores de Transcrição/genética
8.
Chem Pharm Bull (Tokyo) ; 64(9): 1403-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27581645

RESUMO

Polyamines, such as spermine (1), thermospermine (2) and norspermine (3), are widely distributed in nature, and have multiple biological activities. In addition, many of their conjugates have potential for pharmacological use. Here, we present a solid-phase synthesis using our nitrobenzenesulfonyl (Ns) strategy, which can provide 1, 2 and 3 on a gram scale. This approach should be suitable for facile construction of a diverse library of polyamines.


Assuntos
Espermina/análogos & derivados , Espermina/síntese química , Estrutura Molecular , Espermina/química
9.
Curr Opin Plant Biol ; 33: 42-47, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27314622

RESUMO

The vascular system spreads throughout the plant body. This highly organized network contains several types of cells. Vascular cell development is initiated during embryogenesis, and then vascular cells proliferate, form a vascular pattern, and commit to specific cell fates. Recent molecular genetics and modeling approaches have increased our understanding of the molecular mechanisms underlying early vascular development. Early events during vascular development are tightly linked and controlled by transcriptional complexes consisting of LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS5 (TMO5) families. The role of LHW-TMO5 is tightly coupled with biosynthesis and/or signaling of phytohormones such as auxin and cytokinin. In this review, we discuss the regulatory network mediated by LHW-TMO5 during early vascular development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Transativadores/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Transativadores/metabolismo
10.
Plant Cell Physiol ; 57(2): 257-61, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26644462

RESUMO

While Marchantia polymorpha has been utilized as a model system to investigate fundamental biological questions for over almost two centuries, there is renewed interest in M. polymorpha as a model genetic organism in the genomics era. Here we outline community guidelines for M. polymorpha gene and transgene nomenclature, and we anticipate that these guidelines will promote consistency and reduce both redundancy and confusion in the scientific literature.


Assuntos
Genes de Plantas , Guias como Assunto , Marchantia/classificação , Marchantia/genética , Terminologia como Assunto , Transgenes
11.
Curr Biol ; 25(23): 3144-50, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26616019

RESUMO

Controlling cell division and differentiation in meristems is essential for proper plant growth. Two bHLH heterodimers consisting of LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS 5 (TMO5)/TMO5-LIKE1 (T5L1) regulate periclinal cell division in vascular cells in the root apical meristem (RAM). In this study, we further investigated the functions of LHW-T5L1, finding that in addition to controlling cell division, this complex regulates xylem differentiation in the RAM via a novel negative regulatory system. LHW-T5L1 upregulated the thermospermine synthase gene ACAULIS5 (ACL5), as well as SUPPRESSOR OF ACAULIS5 LIKE3 (SACL3), which encodes a bHLH protein, in the RAM. The SACL3 promoter sequence contains a conserved upstream open reading frame (uORF), which blocked translation of the main SACL3 ORF in the absence of thermospermine. Thermospermine eliminated the negative effect of uORF and enhanced SACL3 production. Further genetic and molecular biological analyses indicated that ACL5 and SACL3 suppress the function of LHW-T5L1 through a protein-protein interaction between LHW and SACL3. Finally, we showed that a negative feedback loop consisting of LHW-T5L1, ACL5, SACL3, and LHW-SACL3 contributes to maintain RAM size and proper root growth. These findings suggest that a negative feedback loop regulates the LHW-T5L1 output level to coordinate cell division and differentiation in a cell-autonomous manner.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Divisão Celular , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Xilema/genética , Xilema/crescimento & desenvolvimento , Xilema/metabolismo
13.
Curr Biol ; 24(17): 2053-8, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25131670

RESUMO

Higher organisms possess mechanisms to maintain stem cells' proliferative and pluripotent states in stem cell niches [1]. Plants possess two types of stem cell niches in the root and shoot apical meristems, where regulatory interactions exist between stem cells and organizing cells. Recent studies provided new insights into the molecular mechanism of stem cell maintenance [2-4]. However, earlier and more essential developmental events such as the acquisition of stem cell proliferative activity are still unknown. In vascular tissues, procambial cells function as stem cells and differentiate into xylem, phloem, and procambium. Procambial cell proliferation starts at root apical meristem (RAM) postembryonically; therefore, procambial cell development in RAM is a good model for investigating the regulation of stem cell proliferation. LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS5 (TMO5), as well as its homolog, TMO5-LIKE1 (T5L1), encode bHLH proteins that function as heterodimers (LHW-TMO5 and LHW-T5L1) in vascular tissue organization [5-7]. LHW-T5L1 promotes vascular-cell-specific proliferation in RAM [7]. Here, we demonstrate that LHW-T5L1 promotes expression of key cytokinin production genes, including LONELY GUY3 (LOG3) and LOG4, in xylem precursor cells, resulting in elevated cytokinin levels in the surrounding cells. LHW-T5L1 can also promote expression of AHP6, which suppresses cytokinin signaling and then maintains xylem precursor cells at a nondividing state. Our results indicate that LHW-T5L1 establishes xylem precursor cells as a signal center that promotes procambial-cell-specific proliferation through cytokinin response.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Divisão Celular , Regulação da Expressão Gênica de Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Citocininas/genética , Citocininas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Floema/citologia , Floema/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Análise de Sequência de DNA , Células-Tronco/metabolismo , Xilema/citologia , Xilema/crescimento & desenvolvimento
14.
Physiol Plant ; 151(2): 142-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24111590

RESUMO

The initiation of vascular development occurs during embryogenesis and the development of lateral organs, such as lateral roots and leaves. Understanding the mechanism underlying the initiation of vascular development has been an important goal of plant biologists. Auxin flow is a crucial factor involved in the initiation of vascular development. In addition, recent studies have identified key factors that regulate the establishment of vascular initial cells in embryos and roots. In this review, we summarize the recent findings in this field and discuss the initiation of vascular development.


Assuntos
Desenvolvimento Vegetal , Feixe Vascular de Plantas/crescimento & desenvolvimento , Plantas/metabolismo , Retroalimentação Fisiológica , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/embriologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/embriologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Feixe Vascular de Plantas/embriologia , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/metabolismo , Plantas/embriologia , Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Plant Cell Physiol ; 54(3): 398-405, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23359424

RESUMO

The vascular system in plants, which comprises xylem, phloem and vascular stem cells, originates from provascular cells and forms a continuous network throughout the plant body. Although various aspects of vascular development have been extensively studied, the early process of vascular development remains largely unknown. LONESOME HIGHWAY (LHW), which encodes an atypical basic helix-loop-helix (bHLH) transcription factor, plays an essential role in establishing vascular cells. Here, we report the analysis of LHW homologs in relation to vascular development. Three LHW homologs, LONESOME HIGHWAY LIKE 1-3 (LHL1-LHL3), were preferentially expressed in the plant vasculature. Genetic analysis indicated that, although the LHL3 loss-of-function mutant showed no obvious phenotype, the lhw lhl3 double mutant displayed more severe phenotypic defects in the vasculature of the cotyledons and roots than the lhw single mutant. Only one xylem vessel was formed at the metaxylem position in lhw lhl3 roots, whereas the lhw root formed one protoxylem and one or two metaxylem vessels. Conversely, overexpression of LHL3 enhanced xylem development in the roots. Moreover, N-1-naphthylphthalamic acid caused ectopic LHL3 expression in accordance with induced auxin maximum. These results suggest that LHL3 plays a positive role in xylem differentiation downstream of auxin.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Xilema/genética , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cotilédone/citologia , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Genes Reporter , Mutação , Fenótipo , Ftalimidas/farmacologia , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/citologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Xilema/citologia , Xilema/crescimento & desenvolvimento , Xilema/metabolismo
16.
Development ; 140(4): 765-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23362345

RESUMO

Plant vascular tissues are essential for the existence of land plants. Many studies of transcriptional regulation and cell-cell communication have revealed the process underlying the development of vascular tissues from vascular initial cells. However, the initiation of vascular cell differentiation is still a mystery. Here, we report that LONESOME HIGHWAY (LHW), which encodes a bHLH transcription factor, is expressed in pericycle-vascular mother cells at the globular embryo stage and is required for proper asymmetric cell division to generate vascular initial cells. In addition, ectopic expression of LHW elicits an ectopic auxin response. Moreover, LHW is required for the correct expression patterns of components related to auxin flow, such as PIN-FORMED 1 (PIN1), MONOPTEROS (MP) and ATHB-8, and ATHB-8 partially rescues the vascular defects of lhw. These results suggest that LHW functions as a key regulator to initiate vascular cell differentiation in association with auxin regulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Ácidos Indolacéticos/metabolismo , Feixe Vascular de Plantas/citologia , Transativadores/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Vetores Genéticos/genética , Técnicas Histológicas , Imageamento Tridimensional , Hibridização In Situ , Feixe Vascular de Plantas/embriologia , Reação em Cadeia da Polimerase em Tempo Real
17.
Plant Cell Physiol ; 52(8): 1354-64, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21693505

RESUMO

Small peptides derived from the CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) gene family play a key role in various cell-cell communications in land plants. Among them, tracheary element differentiation inhibition factor (TDIF; CLE41/CLE44 peptide) and CLE42 peptide of Arabidopsis have almost identical amino acid sequences and act as inhibitors of tracheary element differentiation. In this study, we report a novel function of TDIF and CLE42. We found by the GUS (ß-glucuronidase) reporter gene assay that while CLE41 and CLE44 are expressed preferentially in vascular bundles, CLE42 is expressed strongly in the shoot apical meristem (SAM) and axillary meristems. Overexpression of CLE42 and CLE41 enhanced axillary bud formation in the leaf and cotyledon axils. Before floral transition, the emergence of axillary buds in these plants occurred in an acropetal order. Exogenous supply of either TDIF or CLE42 peptide to the wild type induced similar excess bud emergence. In vascular bundles, the TDIF RECEPTOR (TDR) acts as the main receptor for TDIF. The axillary bud emergence of tdr mutants was little affected by either of the peptides. It was confirmed by scanning electron microscopy that peptide-treated wild-type plants form an axillary meristem-like structure earlier than non-treated plants. SHOOT MERISTEMLESS (STM), a marker gene for meristems, was up-regulated in peptide-treated plants before the axillary meristem becomes morphologically distinguishable. These results indicate that CLE42 peptide and TDIF have an activity to enhance axillary bud formation via the TDR. Judging from its expression pattern, CLE42 may play an important role in the regulation of secondary shoot development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Oligopeptídeos/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/farmacologia , Flores/efeitos dos fármacos , Flores/ultraestrutura , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Meristema/efeitos dos fármacos , Meristema/metabolismo , Meristema/ultraestrutura , Oligopeptídeos/farmacologia , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo
18.
Plant Physiol ; 155(3): 1458-72, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21245191

RESUMO

Nearly all extant land plants possess stomata, the epidermal structures that mediate gas exchange between the plant and the environment. The developmental pathways, cell division patterns, and molecules employed in the generation of these structures are simple examples of processes used in many developmental contexts. One specific module is a set of "master regulator" basic helix-loop-helix transcription factors that regulate individual consecutive steps in stomatal development. Here, we profile transcriptional changes in response to inducible expression of Arabidopsis (Arabidopsis thaliana) FAMA, a basic helix-loop-helix protein whose actions during the final stage in stomatal development regulate both cell division and cell fate. Genes identified by microarray and candidate approaches were then further analyzed to test specific hypothesis about the activity of FAMA, the shape of its regulatory network, and to create a new set of stomata-specific or stomata-enriched reporters.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Redes Reguladoras de Genes/genética , Estômatos de Plantas/citologia , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Imunoprecipitação da Cromatina , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes Reporter , Microscopia Confocal , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Regulação para Cima/genética
19.
Plant Cell ; 22(10): 3461-73, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20952636

RESUMO

Xylem consists of three types of cells: tracheary elements (TEs), parenchyma cells, and fiber cells. TE differentiation includes two essential processes, programmed cell death (PCD) and secondary cell wall formation. These two processes are tightly coupled. However, little is known about the molecular mechanisms underlying these processes. Here, we show that VASCULAR-RELATED NAC-DOMAIN6 (VND6), a master regulator of TEs, regulates some of the downstream genes involved in these processes in a coordinated manner. We first identified genes that are expressed downstream of VND6 but not downstream of SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1), a master regulator of xylem fiber cells, using transformed suspension culture cells in microarray experiments. We found that VND6 and SND1 governed distinct aspects of xylem formation, whereas they regulated a number of genes in common, specifically those related to secondary cell wall formation. Genes involved in TE-specific PCD were upregulated only by VND6. Moreover, we revealed that VND6 directly regulated genes that harbor a TE-specific cis-element, TERE, in their promoters. Thus, we found that VND6 is a direct regulator of genes related to PCD as well as to secondary wall formation.


Assuntos
Apoptose/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Parede Celular/metabolismo , Xilema/metabolismo , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Parede Celular/genética , Células Cultivadas , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição/metabolismo , Xilema/genética
20.
Curr Opin Plant Biol ; 13(6): 670-6, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20869293

RESUMO

In vascular development, uncommitted cells differentiate into different xylem cells through vascular stem cells, such as procambial cells, during vein formation as well as embryogenesis. Cascades of transcriptional regulation of genes play crucial roles in the progress of vascular development. Auxin, cytokinin, and brassinosteroids also function in procambial cell determination, procambial maintenance, and xylem cell differentiation from procambial cells, respectively, through transcriptional regulation. The positive feedback loop typically shown in auxin-flow-MONOPTEROS-(HD-ZIP IIIs)-PIN1-auxin-flow in procambial precursor cell determination and VND7-ASL/LBD-VND7 in xylem vessel cell determination, may be a crucial mechanism that determines vascular cell fates, which occurs in stages.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Xilema/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Xilema/citologia , Xilema/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA